
Motion in a plane

Resolution of vectors

Resolution of vectors is a technique to obtain the "effect" or "contribution" of a vector in specific direction(s).

The "effect" or "contribution" of a vector in a specific direction is called <u>component</u> of the vector in that direction.

Consider a vector A of magnitude |A| making an angle of θ w.r.t. the x-axis as shown in the figure.

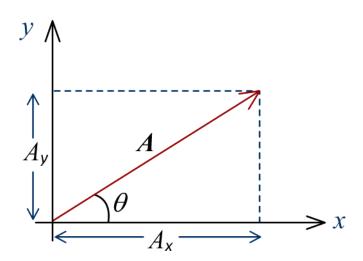
 A_x : x-component A_y : y-component

Click here for simulation

$$\cos(\theta) = \frac{A_{x}}{|A|}$$

$$\Rightarrow A_{x} = |A|\cos(\theta) \quad \text{i}$$

$$\sin(\theta) = \frac{A_{y}}{|A|}$$


$$\Rightarrow A_{y} = |A|\sin(\theta) \quad \text{ii}$$

Using equations (i) & (ii) a vector is represented in its component form as

$$A = A_{\mathsf{x}} \, \hat{i} + A_{\mathsf{y}} \, \hat{j}$$

Motion in a plane

Resolution of vectors

Click here for simulation

A vector may be resolved into 2 (or 3) components in any direction. The directions in which a vector is resolved depends on the problem. You will use different vector resolutions in projectile motion, motion on a inclined plane, movement of charged particle in \boldsymbol{E} and \boldsymbol{B} etc.

$$A_{\mathsf{x}} = |A| \cos(\theta)$$
 _____i

$$A_{y} = |A| \sin(\theta)$$
 — ii

Equations (i) and (ii) are used to obtain components if magnitude (A) and direction (θ) are known

$$|A| = \sqrt{A_x^2 + A_y^2}$$

$$\tan(\theta) = \frac{A_{\rm y}}{A_{\rm x}} \qquad - \boxed{\rm iv}$$

Equations (iii) and (iv) are used to obtain magnitude (A) and direction (θ) if components (A_x and A_y) are known

Motion in a plane

Resolution of vectors

- In three dimensions, a vector is given $A = A_{\rm x}\,\hat{i} + A_{\rm y}\,\hat{j} + A_{\rm z}\,\hat{k}$ by
- Unit vector in the direction of a given vector is obtained by dividing a vector by its own magnitude.

$$\hat{A} = \frac{A_{\mathsf{x}} \,\hat{i} + A_{\mathsf{y}} \,\hat{j}}{|A|}$$

- Component of a vector may be positive, negative or zero
- Magnitude of a vector is always positive
- For a vector of 2 or 3 dimensions, algebraic sum of components of a vector is
 NOT equal to the magnitude of the vector
- Each component of a unit vector is not 1
- A vector may be resolved into components other than x, y and z components